Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-2)\frac{x-3}{2}+2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{x^2-5x+6}{2}+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x^2-5x+10}{2}\end{aligned} $$ | |
| ① | Multiply $x-2$ by $ \dfrac{x-3}{2} $ to get $ \dfrac{x^2-5x+6}{2} $. Step 1: Write $ x-2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} x-2 \cdot \frac{x-3}{2} & \xlongequal{\text{Step 1}} \frac{x-2}{\color{red}{1}} \cdot \frac{x-3}{2} \xlongequal{\text{Step 2}} \frac{ \left( x-2 \right) \cdot \left( x-3 \right) }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2-3x-2x+6 }{ 2 } = \frac{x^2-5x+6}{2} \end{aligned} $$ |
| ② | Add $ \dfrac{x^2-5x+6}{2} $ and $ 2 $ to get $ \dfrac{ \color{purple}{ x^2-5x+10 } }{ 2 }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |