Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-2)(x-3)(x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2-3x-2x+6)(x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2-5x+6)(x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^3+x^2-5x^2-5x+6x+6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}x^3-4x^2+x+6\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x-2}\right) $ by each term in $ \left( x-3\right) $. $$ \left( \color{blue}{x-2}\right) \cdot \left( x-3\right) = x^2-3x-2x+6 $$ |
| ② | Combine like terms: $$ x^2 \color{blue}{-3x} \color{blue}{-2x} +6 = x^2 \color{blue}{-5x} +6 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{x^2-5x+6}\right) $ by each term in $ \left( x+1\right) $. $$ \left( \color{blue}{x^2-5x+6}\right) \cdot \left( x+1\right) = x^3+x^2-5x^2-5x+6x+6 $$ |
| ④ | Combine like terms: $$ x^3+ \color{blue}{x^2} \color{blue}{-5x^2} \color{red}{-5x} + \color{red}{6x} +6 = x^3 \color{blue}{-4x^2} + \color{red}{x} +6 $$ |