Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-1)^2(m^3-z)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2-2x+1)(m^3-z) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}m^3x^2-x^2z-2m^3x+2xz+m^3-z \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}m^3x^2-2m^3x+m^3-x^2z+2xz-z\end{aligned} $$ | |
| ① | Find $ \left(x-1\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(x-1\right)^2 = \color{blue}{x^2} -2 \cdot x \cdot 1 + \color{red}{1^2} = x^2-2x+1\end{aligned} $$ |
| ② | Multiply each term of $ \left( \color{blue}{x^2-2x+1}\right) $ by each term in $ \left( m^3-z\right) $. $$ \left( \color{blue}{x^2-2x+1}\right) \cdot \left( m^3-z\right) = m^3x^2-x^2z-2m^3x+2xz+m^3-z $$ |
| ③ | Combine like terms: $$ m^3x^2-2m^3x+m^3-x^2z+2xz-z = m^3x^2-2m^3x+m^3-x^2z+2xz-z $$ |