Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-1)(x+h)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+hx-x-h \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}hx+x^2-h-x\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x-1}\right) $ by each term in $ \left( x+h\right) $. $$ \left( \color{blue}{x-1}\right) \cdot \left( x+h\right) = x^2+hx-x-h $$ |
| ② | Combine like terms: $$ hx+x^2-h-x = hx+x^2-h-x $$ |