Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-1)(x+2)(x-3)(x+3)\frac{x+5}{(x-1)(x+2)(x+4)(x-4)}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2+2x-x-2)(x-3)(x+3)\frac{x+5}{(x-1)(x+2)(x+4)(x-4)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2+x-2)(x-3)(x+3)\frac{x+5}{(x-1)(x+2)(x+4)(x-4)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(x^3-3x^2+x^2-3x-2x+6)(x+3)\frac{x+5}{(x-1)(x+2)(x+4)(x-4)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(x^3-2x^2-5x+6)(x+3)\frac{x+5}{(x-1)(x+2)(x+4)(x-4)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}(x^4+x^3-11x^2-9x+18)\frac{x+5}{(x-1)(x+2)(x+4)(x-4)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}(x^4+x^3-11x^2-9x+18)\frac{x+5}{(x^2+2x-x-2)(x+4)(x-4)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}(x^4+x^3-11x^2-9x+18)\frac{x+5}{(x^2+x-2)(x+4)(x-4)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}(x^4+x^3-11x^2-9x+18)\frac{x+5}{(x^3+4x^2+x^2+4x-2x-8)(x-4)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}(x^4+x^3-11x^2-9x+18)\frac{x+5}{(x^3+5x^2+2x-8)(x-4)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle11}{\textcircled {11}} \htmlClass{explanationCircle explanationCircle12}{\textcircled {12}} } }}}(x^4+x^3-11x^2-9x+18)\frac{x+5}{x^4+x^3-18x^2-16x+32} \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle13}{\textcircled {13}} } }}}\frac{x^3+5x^2-9x-45}{x^2-16}\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x-1}\right) $ by each term in $ \left( x+2\right) $. $$ \left( \color{blue}{x-1}\right) \cdot \left( x+2\right) = x^2+2x-x-2 $$ |
| ② | Combine like terms: $$ x^2+ \color{blue}{2x} \color{blue}{-x} -2 = x^2+ \color{blue}{x} -2 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{x^2+x-2}\right) $ by each term in $ \left( x-3\right) $. $$ \left( \color{blue}{x^2+x-2}\right) \cdot \left( x-3\right) = x^3-3x^2+x^2-3x-2x+6 $$ |
| ④ | Combine like terms: $$ x^3 \color{blue}{-3x^2} + \color{blue}{x^2} \color{red}{-3x} \color{red}{-2x} +6 = x^3 \color{blue}{-2x^2} \color{red}{-5x} +6 $$ |
| ⑤ | Multiply each term of $ \left( \color{blue}{x^3-2x^2-5x+6}\right) $ by each term in $ \left( x+3\right) $. $$ \left( \color{blue}{x^3-2x^2-5x+6}\right) \cdot \left( x+3\right) = x^4+3x^3-2x^3-6x^2-5x^2-15x+6x+18 $$ |
| ⑥ | Combine like terms: $$ x^4+ \color{blue}{3x^3} \color{blue}{-2x^3} \color{red}{-6x^2} \color{red}{-5x^2} \color{green}{-15x} + \color{green}{6x} +18 = x^4+ \color{blue}{x^3} \color{red}{-11x^2} \color{green}{-9x} +18 $$ |
| ⑦ | Multiply each term of $ \left( \color{blue}{x-1}\right) $ by each term in $ \left( x+2\right) $. $$ \left( \color{blue}{x-1}\right) \cdot \left( x+2\right) = x^2+2x-x-2 $$ |
| ⑧ | Combine like terms: $$ x^2+ \color{blue}{2x} \color{blue}{-x} -2 = x^2+ \color{blue}{x} -2 $$ |
| ⑨ | Multiply each term of $ \left( \color{blue}{x^2+x-2}\right) $ by each term in $ \left( x+4\right) $. $$ \left( \color{blue}{x^2+x-2}\right) \cdot \left( x+4\right) = x^3+4x^2+x^2+4x-2x-8 $$ |
| ⑩ | Combine like terms: $$ x^3+ \color{blue}{4x^2} + \color{blue}{x^2} + \color{red}{4x} \color{red}{-2x} -8 = x^3+ \color{blue}{5x^2} + \color{red}{2x} -8 $$ |
| ⑪ | Multiply each term of $ \left( \color{blue}{x^3+5x^2+2x-8}\right) $ by each term in $ \left( x-4\right) $. $$ \left( \color{blue}{x^3+5x^2+2x-8}\right) \cdot \left( x-4\right) = x^4-4x^3+5x^3-20x^2+2x^2-8x-8x+32 $$ |
| ⑫ | Combine like terms: $$ x^4 \color{blue}{-4x^3} + \color{blue}{5x^3} \color{red}{-20x^2} + \color{red}{2x^2} \color{green}{-8x} \color{green}{-8x} +32 = x^4+ \color{blue}{x^3} \color{red}{-18x^2} \color{green}{-16x} +32 $$ |
| ⑬ | Multiply $x^4+x^3-11x^2-9x+18$ by $ \dfrac{x+5}{x^4+x^3-18x^2-16x+32} $ to get $ \dfrac{ x^3+5x^2-9x-45 }{ x^2-16 } $. Step 1: Write $ x^4+x^3-11x^2-9x+18 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} x^4+x^3-11x^2-9x+18 \cdot \frac{x+5}{x^4+x^3-18x^2-16x+32} & \xlongequal{\text{Step 1}} \frac{x^4+x^3-11x^2-9x+18}{\color{red}{1}} \cdot \frac{x+5}{x^4+x^3-18x^2-16x+32} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( x^2-9 \right) \cdot \color{blue}{ \left( x^2+x-2 \right) } }{ 1 } \cdot \frac{ x+5 }{ \left( x^2-16 \right) \cdot \color{blue}{ \left( x^2+x-2 \right) } } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2-9 }{ 1 } \cdot \frac{ x+5 }{ x^2-16 } \xlongequal{\text{Step 4}} \frac{ \left( x^2-9 \right) \cdot \left( x+5 \right) }{ 1 \cdot \left( x^2-16 \right) } = \\[1ex] & \xlongequal{\text{Step 5}} \frac{ x^3+5x^2-9x-45 }{ x^2-16 } \end{aligned} $$ |