Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-1)(x^2-x+1)-\frac{1}{2}x(2x^2-2x+1)+\frac{x^3}{3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^3-x^2+x-x^2+x-1-\frac{1}{2}x(2x^2-2x+1)+\frac{x^3}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^3-2x^2+2x-1-\frac{1}{2}x(2x^2-2x+1)+\frac{x^3}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^3-2x^2+2x-1-\frac{x}{2}(2x^2-2x+1)+\frac{x^3}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}x^3-2x^2+2x-1-\frac{2x^3-2x^2+x}{2}+\frac{x^3}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-2x^2+3x-2}{2}+\frac{x^3}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{2x^3-6x^2+9x-6}{6}\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x-1}\right) $ by each term in $ \left( x^2-x+1\right) $. $$ \left( \color{blue}{x-1}\right) \cdot \left( x^2-x+1\right) = x^3-x^2+x-x^2+x-1 $$ |
| ② | Combine like terms: $$ x^3 \color{blue}{-x^2} + \color{red}{x} \color{blue}{-x^2} + \color{red}{x} -1 = x^3 \color{blue}{-2x^2} + \color{red}{2x} -1 $$ |
| ③ | Multiply $ \dfrac{1}{2} $ by $ x $ to get $ \dfrac{ x }{ 2 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot x & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ x }{ 2 } \end{aligned} $$ |
| ④ | Multiply $ \dfrac{x}{2} $ by $ 2x^2-2x+1 $ to get $ \dfrac{ 2x^3-2x^2+x }{ 2 } $. Step 1: Write $ 2x^2-2x+1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{x}{2} \cdot 2x^2-2x+1 & \xlongequal{\text{Step 1}} \frac{x}{2} \cdot \frac{2x^2-2x+1}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ x \cdot \left( 2x^2-2x+1 \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x^3-2x^2+x }{ 2 } \end{aligned} $$ |
| ⑤ | Subtract $ \dfrac{2x^3-2x^2+x}{2} $ from $ x^3-2x^2+2x-1 $ to get $ \dfrac{ \color{purple}{ -2x^2+3x-2 } }{ 2 }$. Step 1: Write $ x^3-2x^2+2x-1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑥ | Add $ \dfrac{-2x^2+3x-2}{2} $ and $ \dfrac{x^3}{3} $ to get $ \dfrac{ \color{purple}{ 2x^3-6x^2+9x-6 } }{ 6 }$. To add raitonal expressions, both fractions must have the same denominator. |