Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-0.5)(x-0.25)(x-0.8)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2+0x+0x+0)(x-0.8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2(x-0.8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^3+0x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}x^3\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x0}\right) $ by each term in $ \left( x0\right) $. $$ \left( \color{blue}{x0}\right) \cdot \left( x0\right) = x^2 \cancel{0x} \cancel{0x}0 $$ |
| ② | Combine like terms: $$ x^2 \, \color{blue}{ \cancel{0x}} \, \, \color{blue}{ \cancel{0x}} \,0 = x^2 $$ |
| ③ | Multiply $ \color{blue}{x^2} $ by $ \left( x0\right) $ $$ \color{blue}{x^2} \cdot \left( x0\right) = x^30x^2 $$ |
| ④ | Combine like terms: $$ x^3 = x^3 $$ |