Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+9)(4x\cdot2+5x+6)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x+9)(8x+5x+6) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x+9)(13x+6) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}13x^2+6x+117x+54 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}13x^2+123x+54\end{aligned} $$ | |
| ① | $$ 4 x \cdot 2 = 8 x $$ |
| ② | Combine like terms: $$ \color{blue}{8x} + \color{blue}{5x} +6 = \color{blue}{13x} +6 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{x+9}\right) $ by each term in $ \left( 13x+6\right) $. $$ \left( \color{blue}{x+9}\right) \cdot \left( 13x+6\right) = 13x^2+6x+117x+54 $$ |
| ④ | Combine like terms: $$ 13x^2+ \color{blue}{6x} + \color{blue}{117x} +54 = 13x^2+ \color{blue}{123x} +54 $$ |