Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+1)\cdot3(x\cdot2+x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x+1)\cdot3(3x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(3x+3)(3x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}9x^2+3x+9x+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}9x^2+12x+3\end{aligned} $$ | |
| ① | Combine like terms: $$ \color{blue}{2x} + \color{blue}{x} +1 = \color{blue}{3x} +1 $$ |
| ② | $$ \left( \color{blue}{x+1}\right) \cdot 3 = 3x+3 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{3x+3}\right) $ by each term in $ \left( 3x+1\right) $. $$ \left( \color{blue}{3x+3}\right) \cdot \left( 3x+1\right) = 9x^2+3x+9x+3 $$ |
| ④ | Combine like terms: $$ 9x^2+ \color{blue}{3x} + \color{blue}{9x} +3 = 9x^2+ \color{blue}{12x} +3 $$ |