Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{x-\frac{x}{x+3}}{x+2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{x^2+2x}{x+3}}{x+2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x}{x+3}\end{aligned} $$ | |
| ① | Subtract $ \dfrac{x}{x+3} $ from $ x $ to get $ \dfrac{ \color{purple}{ x^2+2x } }{ x+3 }$. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Divide $ \dfrac{x^2+2x}{x+3} $ by $ x+2 $ to get $ \dfrac{ x }{ x+3 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{x^2+2x}{x+3} }{x+2} & \xlongequal{\text{Step 1}} \frac{x^2+2x}{x+3} \cdot \frac{\color{blue}{1}}{\color{blue}{x+2}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ x \cdot \color{blue}{ \left( x+2 \right) } }{ x+3 } \cdot \frac{ 1 }{ 1 \cdot \color{blue}{ \left( x+2 \right) } } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x }{ x+3 } \cdot \frac{ 1 }{ 1 } \xlongequal{\text{Step 4}} \frac{ x \cdot 1 }{ \left( x+3 \right) \cdot 1 } \xlongequal{\text{Step 5}} \frac{ x }{ x+3 } \end{aligned} $$ |