Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-5)(x\cdot2+5x+25)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x-5)(7x+25) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}7x^2+25x-35x-125 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}7x^2-10x-125\end{aligned} $$ | |
| ① | Combine like terms: $$ \color{blue}{2x} + \color{blue}{5x} +25 = \color{blue}{7x} +25 $$ |
| ② | Multiply each term of $ \left( \color{blue}{x-5}\right) $ by each term in $ \left( 7x+25\right) $. $$ \left( \color{blue}{x-5}\right) \cdot \left( 7x+25\right) = 7x^2+25x-35x-125 $$ |
| ③ | Combine like terms: $$ 7x^2+ \color{blue}{25x} \color{blue}{-35x} -125 = 7x^2 \color{blue}{-10x} -125 $$ |