Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x^4+3x^3-12x^2-20x+48)(x^3+3x^2+3x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^7+6x^6-46x^4-45x^3+72x^2+124x+48\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x^4+3x^3-12x^2-20x+48}\right) $ by each term in $ \left( x^3+3x^2+3x+1\right) $. $$ \left( \color{blue}{x^4+3x^3-12x^2-20x+48}\right) \cdot \left( x^3+3x^2+3x+1\right) = \\ = x^7+3x^6+3x^5+x^4+3x^6+9x^5+9x^4+3x^3-12x^5-36x^4-36x^3-12x^2-20x^4-60x^3-60x^2-20x+48x^3+144x^2+144x+48 $$ |
| ② | Combine like terms: $$ x^7+ \color{blue}{3x^6} + \color{red}{3x^5} + \color{green}{x^4} + \color{blue}{3x^6} + \color{orange}{9x^5} + \color{blue}{9x^4} + \color{red}{3x^3} \color{orange}{-12x^5} \color{green}{-36x^4} \color{orange}{-36x^3} \color{blue}{-12x^2} \color{green}{-20x^4} \color{red}{-60x^3} \color{green}{-60x^2} \color{orange}{-20x} + \color{red}{48x^3} + \color{green}{144x^2} + \color{orange}{144x} +48 = \\ = x^7+ \color{blue}{6x^6} \color{green}{-46x^4} \color{red}{-45x^3} + \color{green}{72x^2} + \color{orange}{124x} +48 $$ |