Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x^3-x+1)^2-(x^3-x)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^6-2x^4+2x^3+x^2-2x+1-(x^6-2x^4+x^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^6-2x^4+2x^3+x^2-2x+1-x^6+2x^4-x^2 \xlongequal{ } \\[1 em] & \xlongequal{ } \cancel{x^6} -\cancel{2x^4}+2x^3+ \cancel{x^2}-2x+1 -\cancel{x^6}+ \cancel{2x^4} -\cancel{x^2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}2x^3-2x+1\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x^3-x+1}\right) $ by each term in $ \left( x^3-x+1\right) $. $$ \left( \color{blue}{x^3-x+1}\right) \cdot \left( x^3-x+1\right) = x^6-x^4+x^3-x^4+x^2-x+x^3-x+1 $$ |
| ② | Combine like terms: $$ x^6 \color{blue}{-x^4} + \color{red}{x^3} \color{blue}{-x^4} +x^2 \color{green}{-x} + \color{red}{x^3} \color{green}{-x} +1 = x^6 \color{blue}{-2x^4} + \color{red}{2x^3} +x^2 \color{green}{-2x} +1 $$Find $ \left(x^3-x\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x^3 } $ and $ B = \color{red}{ x }$. $$ \begin{aligned}\left(x^3-x\right)^2 = \color{blue}{\left( x^3 \right)^2} -2 \cdot x^3 \cdot x + \color{red}{x^2} = x^6-2x^4+x^2\end{aligned} $$ |
| ③ | Remove the parentheses by changing the sign of each term within them. $$ - \left( x^6-2x^4+x^2 \right) = -x^6+2x^4-x^2 $$ |
| ④ | Combine like terms: $$ \, \color{blue}{ \cancel{x^6}} \, \, \color{green}{ -\cancel{2x^4}} \,+2x^3+ \, \color{blue}{ \cancel{x^2}} \,-2x+1 \, \color{blue}{ -\cancel{x^6}} \,+ \, \color{green}{ \cancel{2x^4}} \, \, \color{blue}{ -\cancel{x^2}} \, = 2x^3-2x+1 $$ |