Tap the blue circles to see an explanation.
| $$ \begin{aligned}x^3+4+14x-(x^3-2+2x^2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^3+4+14x-x^3+2-2x^2 \xlongequal{ } \\[1 em] & \xlongequal{ } \cancel{x^3}+4+14x -\cancel{x^3}+2-2x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-2x^2+14x+6\end{aligned} $$ | |
| ① | Remove the parentheses by changing the sign of each term within them. $$ - \left( x^3-2+2x^2 \right) = -x^3+2-2x^2 $$ |
| ② | Combine like terms: $$ \, \color{blue}{ \cancel{x^3}} \,+ \color{green}{4} +14x \, \color{blue}{ -\cancel{x^3}} \,+ \color{green}{2} -2x^2 = -2x^2+14x+ \color{green}{6} $$ |