Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x^2+x-2)(2x^2-3x-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^4-x^3-10x^2+3x+6\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x^2+x-2}\right) $ by each term in $ \left( 2x^2-3x-3\right) $. $$ \left( \color{blue}{x^2+x-2}\right) \cdot \left( 2x^2-3x-3\right) = 2x^4-3x^3-3x^2+2x^3-3x^2-3x-4x^2+6x+6 $$ |
| ② | Combine like terms: $$ 2x^4 \color{blue}{-3x^3} \color{red}{-3x^2} + \color{blue}{2x^3} \color{green}{-3x^2} \color{orange}{-3x} \color{green}{-4x^2} + \color{orange}{6x} +6 = 2x^4 \color{blue}{-x^3} \color{green}{-10x^2} + \color{orange}{3x} +6 $$ |