Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x^2+x^3-x)^2+3x^2(x^3-x)-(x^3-x)^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^6+2x^5-x^4-2x^3+x^2+3x^2(x^3-x)-(x^9-3x^7+3x^5-x^3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^6+2x^5-x^4-2x^3+x^2+3x^5-3x^3-(x^9-3x^7+3x^5-x^3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}x^6+5x^5-x^4-5x^3+x^2-(x^9-3x^7+3x^5-x^3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}x^6+5x^5-x^4-5x^3+x^2-x^9+3x^7-3x^5+x^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}-x^9+3x^7+x^6+2x^5-x^4-4x^3+x^2\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x^2+x^3-x}\right) $ by each term in $ \left( x^2+x^3-x\right) $. $$ \left( \color{blue}{x^2+x^3-x}\right) \cdot \left( x^2+x^3-x\right) = \\ = \cancel{x^4}+x^5-x^3+x^5+x^6 -\cancel{x^4}-x^3 -\cancel{x^4}+x^2 $$ |
| ② | Combine like terms: $$ \, \color{blue}{ \cancel{x^4}} \,+ \color{green}{x^5} \color{orange}{-x^3} + \color{green}{x^5} +x^6 \, \color{blue}{ -\cancel{x^4}} \, \color{orange}{-x^3} \, \color{blue}{ -\cancel{x^4}} \,+x^2 = \\ = x^6+ \color{green}{2x^5} \color{blue}{-x^4} \color{orange}{-2x^3} +x^2 $$Find $ \left(x^3-x\right)^3 $ using formula $$ (A - B) = A^3 - 3A^2B + 3AB^2 - B^3 $$where $ A = x^3 $ and $ B = x $. $$ \left(x^3-x\right)^3 = \left( x^3 \right)^3-3 \cdot \left( x^3 \right)^2 \cdot x + 3 \cdot x^3 \cdot x^2-x^3 = x^9-3x^7+3x^5-x^3 $$ |
| ③ | Multiply $ \color{blue}{3x^2} $ by $ \left( x^3-x\right) $ $$ \color{blue}{3x^2} \cdot \left( x^3-x\right) = 3x^5-3x^3 $$ |
| ④ | Combine like terms: $$ x^6+ \color{blue}{2x^5} -x^4 \color{red}{-2x^3} +x^2+ \color{blue}{3x^5} \color{red}{-3x^3} = x^6+ \color{blue}{5x^5} -x^4 \color{red}{-5x^3} +x^2 $$ |
| ⑤ | Remove the parentheses by changing the sign of each term within them. $$ - \left( x^9-3x^7+3x^5-x^3 \right) = -x^9+3x^7-3x^5+x^3 $$ |
| ⑥ | Combine like terms: $$ x^6+ \color{blue}{5x^5} -x^4 \color{red}{-5x^3} +x^2-x^9+3x^7 \color{blue}{-3x^5} + \color{red}{x^3} = -x^9+3x^7+x^6+ \color{blue}{2x^5} -x^4 \color{red}{-4x^3} +x^2 $$ |