Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x^2+x)(x+h-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^3+hx^2-x^2+x^2+hx-x \xlongequal{ } \\[1 em] & \xlongequal{ }x^3+hx^2 -\cancel{x^2}+ \cancel{x^2}+hx-x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}hx^2+x^3+hx-x\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x^2+x}\right) $ by each term in $ \left( x+h-1\right) $. $$ \left( \color{blue}{x^2+x}\right) \cdot \left( x+h-1\right) = x^3+hx^2 -\cancel{x^2}+ \cancel{x^2}+hx-x $$ |
| ② | Combine like terms: $$ x^3+hx^2 \, \color{blue}{ -\cancel{x^2}} \,+ \, \color{blue}{ \cancel{x^2}} \,+hx-x = hx^2+x^3+hx-x $$ |