Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x^2+4x-5)(8x^2+2x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8x^4+2x^3+32x^3+8x^2-40x^2-10x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8x^4+34x^3-32x^2-10x\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x^2+4x-5}\right) $ by each term in $ \left( 8x^2+2x\right) $. $$ \left( \color{blue}{x^2+4x-5}\right) \cdot \left( 8x^2+2x\right) = 8x^4+2x^3+32x^3+8x^2-40x^2-10x $$ |
| ② | Combine like terms: $$ 8x^4+ \color{blue}{2x^3} + \color{blue}{32x^3} + \color{red}{8x^2} \color{red}{-40x^2} -10x = 8x^4+ \color{blue}{34x^3} \color{red}{-32x^2} -10x $$ |