Tap the blue circles to see an explanation.
| $$ \begin{aligned}x^2+\frac{3}{2}x^4-2-(2+\frac{3}{2}x^4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2+\frac{3x^4}{2}-2-(2+\frac{3x^4}{2}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{3x^4+2x^2}{2}-2-\frac{3x^4+4}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{3x^4+2x^2-4}{2}-\frac{3x^4+4}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{2x^2-8}{2}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{3}{2} $ by $ x^4 $ to get $ \dfrac{ 3x^4 }{ 2 } $. Step 1: Write $ x^4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{2} \cdot x^4 & \xlongequal{\text{Step 1}} \frac{3}{2} \cdot \frac{x^4}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x^4 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3x^4 }{ 2 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{3}{2} $ by $ x^4 $ to get $ \dfrac{ 3x^4 }{ 2 } $. Step 1: Write $ x^4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{2} \cdot x^4 & \xlongequal{\text{Step 1}} \frac{3}{2} \cdot \frac{x^4}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x^4 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3x^4 }{ 2 } \end{aligned} $$ |
| ③ | Add $x^2$ and $ \dfrac{3x^4}{2} $ to get $ \dfrac{ \color{purple}{ 3x^4+2x^2 } }{ 2 }$. Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ④ | Add $2$ and $ \dfrac{3x^4}{2} $ to get $ \dfrac{ \color{purple}{ 3x^4+4 } }{ 2 }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Subtract $2$ from $ \dfrac{3x^4+2x^2}{2} $ to get $ \dfrac{ \color{purple}{ 3x^4+2x^2-4 } }{ 2 }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑥ | Add $2$ and $ \dfrac{3x^4}{2} $ to get $ \dfrac{ \color{purple}{ 3x^4+4 } }{ 2 }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑦ | Subtract $ \dfrac{3x^4+4}{2} $ from $ \dfrac{3x^4+2x^2-4}{2} $ to get $ \dfrac{2x^2-8}{2} $. To subtract expressions with the same denominators, we subtract the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{3x^4+2x^2-4}{2} - \frac{3x^4+4}{2} & = \frac{3x^4+2x^2-4}{\color{blue}{2}} - \frac{3x^4+4}{\color{blue}{2}} = \\[1ex] &=\frac{ 3x^4+2x^2-4 - \left( 3x^4+4 \right) }{ \color{blue}{ 2 }}= \frac{2x^2-8}{2} \end{aligned} $$ |