Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x^2+2x-2)(3x^2-x-9)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x^4+5x^3-17x^2-16x+18\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x^2+2x-2}\right) $ by each term in $ \left( 3x^2-x-9\right) $. $$ \left( \color{blue}{x^2+2x-2}\right) \cdot \left( 3x^2-x-9\right) = 3x^4-x^3-9x^2+6x^3-2x^2-18x-6x^2+2x+18 $$ |
| ② | Combine like terms: $$ 3x^4 \color{blue}{-x^3} \color{red}{-9x^2} + \color{blue}{6x^3} \color{green}{-2x^2} \color{orange}{-18x} \color{green}{-6x^2} + \color{orange}{2x} +18 = \\ = 3x^4+ \color{blue}{5x^3} \color{green}{-17x^2} \color{orange}{-16x} +18 $$ |