Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x^2+16)(2x^3-5x-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^5-5x^3-3x^2+32x^3-80x-48 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^5+27x^3-3x^2-80x-48\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x^2+16}\right) $ by each term in $ \left( 2x^3-5x-3\right) $. $$ \left( \color{blue}{x^2+16}\right) \cdot \left( 2x^3-5x-3\right) = 2x^5-5x^3-3x^2+32x^3-80x-48 $$ |
| ② | Combine like terms: $$ 2x^5 \color{blue}{-5x^3} -3x^2+ \color{blue}{32x^3} -80x-48 = 2x^5+ \color{blue}{27x^3} -3x^2-80x-48 $$ |