Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x^2-x+1)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^4-2x^3+3x^2-2x+1\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x^2-x+1}\right) $ by each term in $ \left( x^2-x+1\right) $. $$ \left( \color{blue}{x^2-x+1}\right) \cdot \left( x^2-x+1\right) = x^4-x^3+x^2-x^3+x^2-x+x^2-x+1 $$ |
| ② | Combine like terms: $$ x^4 \color{blue}{-x^3} + \color{red}{x^2} \color{blue}{-x^3} + \color{green}{x^2} \color{orange}{-x} + \color{green}{x^2} \color{orange}{-x} +1 = x^4 \color{blue}{-2x^3} + \color{green}{3x^2} \color{orange}{-2x} +1 $$ |