Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x^2-8x+17)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^4-16x^3+98x^2-272x+289\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x^2-8x+17}\right) $ by each term in $ \left( x^2-8x+17\right) $. $$ \left( \color{blue}{x^2-8x+17}\right) \cdot \left( x^2-8x+17\right) = x^4-8x^3+17x^2-8x^3+64x^2-136x+17x^2-136x+289 $$ |
| ② | Combine like terms: $$ x^4 \color{blue}{-8x^3} + \color{red}{17x^2} \color{blue}{-8x^3} + \color{green}{64x^2} \color{orange}{-136x} + \color{green}{17x^2} \color{orange}{-136x} +289 = \\ = x^4 \color{blue}{-16x^3} + \color{green}{98x^2} \color{orange}{-272x} +289 $$ |