Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x^2-4x+29)(2x^2-\frac{3}{4}x+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2-4x+29)(2x^2-\frac{3x}{4}+3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2-4x+29)(\frac{8x^2-3x}{4}+3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(x^2-4x+29)\frac{8x^2-3x+12}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{8x^4-35x^3+256x^2-135x+348}{4}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{3}{4} $ by $ x $ to get $ \dfrac{ 3x }{ 4 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{4} \cdot x & \xlongequal{\text{Step 1}} \frac{3}{4} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x }{ 4 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 3x }{ 4 } \end{aligned} $$ |
| ② | Subtract $ \dfrac{3x}{4} $ from $ 2x^2 $ to get $ \dfrac{ \color{purple}{ 8x^2-3x } }{ 4 }$. Step 1: Write $ 2x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Add $ \dfrac{8x^2-3x}{4} $ and $ 3 $ to get $ \dfrac{ \color{purple}{ 8x^2-3x+12 } }{ 4 }$. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ④ | Multiply $x^2-4x+29$ by $ \dfrac{8x^2-3x+12}{4} $ to get $ \dfrac{8x^4-35x^3+256x^2-135x+348}{4} $. Step 1: Write $ x^2-4x+29 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} x^2-4x+29 \cdot \frac{8x^2-3x+12}{4} & \xlongequal{\text{Step 1}} \frac{x^2-4x+29}{\color{red}{1}} \cdot \frac{8x^2-3x+12}{4} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( x^2-4x+29 \right) \cdot \left( 8x^2-3x+12 \right) }{ 1 \cdot 4 } \xlongequal{\text{Step 3}} \frac{ 8x^4-3x^3+12x^2-32x^3+12x^2-48x+232x^2-87x+348 }{ 4 } = \\[1ex] &= \frac{8x^4-35x^3+256x^2-135x+348}{4} \end{aligned} $$ |