Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x^2-2x-11)(x-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^3-x^2-2x^2+2x-11x+11 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^3-3x^2-9x+11\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x^2-2x-11}\right) $ by each term in $ \left( x-1\right) $. $$ \left( \color{blue}{x^2-2x-11}\right) \cdot \left( x-1\right) = x^3-x^2-2x^2+2x-11x+11 $$ |
| ② | Combine like terms: $$ x^3 \color{blue}{-x^2} \color{blue}{-2x^2} + \color{red}{2x} \color{red}{-11x} +11 = x^3 \color{blue}{-3x^2} \color{red}{-9x} +11 $$ |