| $$ \begin{aligned}x^2\frac{5x}{6x^2\cdot15x^3}& \xlongequal{ }x^2\frac{5x}{90x^5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5x^3}{90x^5}\end{aligned} $$ | |
| ① | Multiply $x^2$ by $ \dfrac{5x}{90x^5} $ to get $ \dfrac{ 5x^3 }{ 90x^5 } $. Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} x^2 \cdot \frac{5x}{90x^5} & \xlongequal{\text{Step 1}} \frac{x^2}{\color{red}{1}} \cdot \frac{5x}{90x^5} \xlongequal{\text{Step 2}} \frac{ x^2 \cdot 5x }{ 1 \cdot 90x^5 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 5x^3 }{ 90x^5 } \end{aligned} $$ |