Tap the blue circles to see an explanation.
| $$ \begin{aligned}(w+b-6)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}b^2+2bw+w^2-12b-12w+36\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{w+b-6}\right) $ by each term in $ \left( w+b-6\right) $. $$ \left( \color{blue}{w+b-6}\right) \cdot \left( w+b-6\right) = w^2+bw-6w+bw+b^2-6b-6w-6b+36 $$ |
| ② | Combine like terms: $$ w^2+ \color{blue}{bw} \color{red}{-6w} + \color{blue}{bw} +b^2 \color{green}{-6b} \color{red}{-6w} \color{green}{-6b} +36 = b^2+ \color{blue}{2bw} +w^2 \color{green}{-12b} \color{red}{-12w} +36 $$ |