Tap the blue circles to see an explanation.
| $$ \begin{aligned}(w+b)^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}w^3+3bw^2+3b^2w+b^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}b^3+3b^2w+3bw^2+w^3\end{aligned} $$ | |
| ① | Find $ \left(w+b\right)^3 $ using formula $$ (A + B) = A^3 + 3A^2B + 3AB^2 + B^3 $$where $ A = w $ and $ B = b $. $$ \left(w+b\right)^3 = w^3+3 \cdot w^2 \cdot b + 3 \cdot w \cdot b^2+b^3 = w^3+3bw^2+3b^2w+b^3 $$ |
| ② | Combine like terms: $$ b^3+3b^2w+3bw^2+w^3 = b^3+3b^2w+3bw^2+w^3 $$ |