Tap the blue circles to see an explanation.
| $$ \begin{aligned}(w-b)^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}w^3-3bw^2+3b^2w-b^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-b^3+3b^2w-3bw^2+w^3\end{aligned} $$ | |
| ① | Find $ \left(w-b\right)^3 $ using formula $$ (A - B) = A^3 - 3A^2B + 3AB^2 - B^3 $$where $ A = w $ and $ B = b $. $$ \left(w-b\right)^3 = w^3-3 \cdot w^2 \cdot b + 3 \cdot w \cdot b^2-b^3 = w^3-3bw^2+3b^2w-b^3 $$ |
| ② | Combine like terms: $$ -b^3+3b^2w-3bw^2+w^3 = -b^3+3b^2w-3bw^2+w^3 $$ |