Tap the blue circles to see an explanation.
| $$ \begin{aligned}(w-5p)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}w^2-10pw+25p^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}25p^2-10pw+w^2\end{aligned} $$ | |
| ① | Find $ \left(w-5p\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ w } $ and $ B = \color{red}{ 5p }$. $$ \begin{aligned}\left(w-5p\right)^2 = \color{blue}{w^2} -2 \cdot w \cdot 5p + \color{red}{\left( 5p \right)^2} = w^2-10pw+25p^2\end{aligned} $$ |
| ② | Combine like terms: $$ 25p^2-10pw+w^2 = 25p^2-10pw+w^2 $$ |