Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{hp\frac{l^2}{2k}+p\frac{l^3}{3}}{1-\frac{h}{k}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\frac{hl^2p}{2k}+\frac{l^3p}{3}}{\frac{-h+k}{k}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{\frac{2kl^3p+3hl^2p}{6k}}{\frac{-h+k}{k}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{2k^2l^3p+3hkl^2p}{-6hk+6k^2} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2kl^3p+3hl^2p}{-6h+6k}\end{aligned} $$ | |
| ① | Multiply $hp$ by $ \dfrac{l^2}{2k} $ to get $ \dfrac{ hl^2p }{ 2k } $. Step 1: Write $ hp $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} hp \cdot \frac{l^2}{2k} & \xlongequal{\text{Step 1}} \frac{hp}{\color{red}{1}} \cdot \frac{l^2}{2k} \xlongequal{\text{Step 2}} \frac{ hp \cdot l^2 }{ 1 \cdot 2k } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ hl^2p }{ 2k } \end{aligned} $$ |
| ② | Multiply $p$ by $ \dfrac{l^3}{3} $ to get $ \dfrac{ l^3p }{ 3 } $. Step 1: Write $ p $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} p \cdot \frac{l^3}{3} & \xlongequal{\text{Step 1}} \frac{p}{\color{red}{1}} \cdot \frac{l^3}{3} \xlongequal{\text{Step 2}} \frac{ p \cdot l^3 }{ 1 \cdot 3 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ l^3p }{ 3 } \end{aligned} $$ |
| ③ | Subtract $ \dfrac{h}{k} $ from $ 1 $ to get $ \dfrac{ \color{purple}{ -h+k } }{ k }$. Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Add $ \dfrac{hl^2p}{2k} $ and $ \dfrac{l^3p}{3} $ to get $ \dfrac{ \color{purple}{ 2kl^3p+3hl^2p } }{ 6k }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Subtract $ \dfrac{h}{k} $ from $ 1 $ to get $ \dfrac{ \color{purple}{ -h+k } }{ k }$. Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑥ | Divide $ \dfrac{2kl^3p+3hl^2p}{6k} $ by $ \dfrac{-h+k}{k} $ to get $ \dfrac{ 2k^2l^3p+3hkl^2p }{ -6hk+6k^2 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{2kl^3p+3hl^2p}{6k} }{ \frac{\color{blue}{-h+k}}{\color{blue}{k}} } & \xlongequal{\text{Step 1}} \frac{2kl^3p+3hl^2p}{6k} \cdot \frac{\color{blue}{k}}{\color{blue}{-h+k}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( 2kl^3p+3hl^2p \right) \cdot k }{ 6k \cdot \left( -h+k \right) } \xlongequal{\text{Step 3}} \frac{ 2k^2l^3p+3hkl^2p }{ -6hk+6k^2 } \end{aligned} $$ |