Tap the blue circles to see an explanation.
| $$ \begin{aligned}(a+b)(a^2+ab+b^2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}a^3+a^2b+ab^2+a^2b+ab^2+b^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}a^3+2a^2b+2ab^2+b^3\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{a+b}\right) $ by each term in $ \left( a^2+ab+b^2\right) $. $$ \left( \color{blue}{a+b}\right) \cdot \left( a^2+ab+b^2\right) = a^3+a^2b+ab^2+a^2b+ab^2+b^3 $$ |
| ② | Combine like terms: $$ a^3+ \color{blue}{a^2b} + \color{red}{ab^2} + \color{blue}{a^2b} + \color{red}{ab^2} +b^3 = a^3+ \color{blue}{2a^2b} + \color{red}{2ab^2} +b^3 $$ |