Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{(a-x-y)^3}{3}+x^2(a-x-y)+y^2(a-x-y)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{(a-x-y)^3}{3}+ax^2-x^3-x^2y+ay^2-xy^2-y^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{a^3-3a^2x-3a^2y+3ax^2+6axy+3ay^2-x^3-3x^2y-3xy^2-y^3}{3}+ax^2-x^3-x^2y+ay^2-xy^2-y^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{a^3-3a^2x-3a^2y+6ax^2+6axy+3ay^2-4x^3-6x^2y-3xy^2-y^3}{3}+ay^2-xy^2-y^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{a^3-3a^2x-3a^2y+6ax^2+6axy+6ay^2-4x^3-6x^2y-6xy^2-4y^3}{3}\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{x^2} $ by $ \left( a-x-y\right) $ $$ \color{blue}{x^2} \cdot \left( a-x-y\right) = ax^2-x^3-x^2y $$Multiply $ \color{blue}{y^2} $ by $ \left( a-x-y\right) $ $$ \color{blue}{y^2} \cdot \left( a-x-y\right) = ay^2-xy^2-y^3 $$ |
| ② | Multiply each term of $ \left( \color{blue}{a-x-y}\right) $ by each term in $ \left( a-x-y\right) $. $$ \left( \color{blue}{a-x-y}\right) \cdot \left( a-x-y\right) = a^2-ax-ay-ax+x^2+xy-ay+xy+y^2 $$ |
| ③ | Combine like terms: $$ a^2 \color{blue}{-ax} \color{red}{-ay} \color{blue}{-ax} +x^2+ \color{green}{xy} \color{red}{-ay} + \color{green}{xy} +y^2 = \\ = a^2 \color{blue}{-2ax} \color{red}{-2ay} +x^2+ \color{green}{2xy} +y^2 $$ |
| ④ | Multiply each term of $ \left( \color{blue}{a^2-2ax-2ay+x^2+2xy+y^2}\right) $ by each term in $ \left( a-x-y\right) $. $$ \left( \color{blue}{a^2-2ax-2ay+x^2+2xy+y^2}\right) \cdot \left( a-x-y\right) = \\ = a^3-a^2x-a^2y-2a^2x+2ax^2+2axy-2a^2y+2axy+2ay^2+ax^2-x^3-x^2y+2axy-2x^2y-2xy^2+ay^2-xy^2-y^3 $$ |
| ⑤ | Combine like terms: $$ a^3 \color{blue}{-a^2x} \color{red}{-a^2y} \color{blue}{-2a^2x} + \color{green}{2ax^2} + \color{orange}{2axy} \color{red}{-2a^2y} + \color{blue}{2axy} + \color{red}{2ay^2} + \color{green}{ax^2} -x^3 \color{green}{-x^2y} + \color{blue}{2axy} \color{green}{-2x^2y} \color{orange}{-2xy^2} + \color{red}{ay^2} \color{orange}{-xy^2} -y^3 = \\ = a^3 \color{blue}{-3a^2x} \color{red}{-3a^2y} + \color{green}{3ax^2} + \color{blue}{6axy} + \color{red}{3ay^2} -x^3 \color{green}{-3x^2y} \color{orange}{-3xy^2} -y^3 $$ |
| ⑥ | Add $ \dfrac{a^3-3a^2x-3a^2y+3ax^2+6axy+3ay^2-x^3-3x^2y-3xy^2-y^3}{3} $ and $ ax^2-x^3-x^2y $ to get $ \dfrac{ \color{purple}{ a^3-3a^2x-3a^2y+6ax^2+6axy+3ay^2-4x^3-6x^2y-3xy^2-y^3 } }{ 3 }$. Step 1: Write $ ax^2-x^3-x^2y $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑦ | Add $ \dfrac{a^3-3a^2x-3a^2y+6ax^2+6axy+3ay^2-4x^3-6x^2y-3xy^2-y^3}{3} $ and $ ay^2-xy^2-y^3 $ to get $ \dfrac{ \color{purple}{ a^3-3a^2x-3a^2y+6ax^2+6axy+6ay^2-4x^3-6x^2y-6xy^2-4y^3 } }{ 3 }$. Step 1: Write $ ay^2-xy^2-y^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |