Tap the blue circles to see an explanation.
| $$ \begin{aligned}(a^3b^2+x^2)(a^3b^2-x^2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}a^6b^4-a^3b^2x^2+a^3b^2x^2-x^4 \xlongequal{ } \\[1 em] & \xlongequal{ }a^6b^4 -\cancel{a^3b^2x^2}+ \cancel{a^3b^2x^2}-x^4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}a^6b^4-x^4\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{a^3b^2+x^2}\right) $ by each term in $ \left( a^3b^2-x^2\right) $. $$ \left( \color{blue}{a^3b^2+x^2}\right) \cdot \left( a^3b^2-x^2\right) = a^6b^4 -\cancel{a^3b^2x^2}+ \cancel{a^3b^2x^2}-x^4 $$ |
| ② | Combine like terms: $$ a^6b^4 \, \color{blue}{ -\cancel{a^3b^2x^2}} \,+ \, \color{blue}{ \cancel{a^3b^2x^2}} \,-x^4 = a^6b^4-x^4 $$ |