Tap the blue circles to see an explanation.
| $$ \begin{aligned}9x^2-3x-9-(x+8)(x+8)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}9x^2-3x-9-(x^2+8x+8x+64) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}9x^2-3x-9-(x^2+16x+64) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}9x^2-3x-9-x^2-16x-64 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}8x^2-19x-73\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+8}\right) $ by each term in $ \left( x+8\right) $. $$ \left( \color{blue}{x+8}\right) \cdot \left( x+8\right) = x^2+8x+8x+64 $$ |
| ② | Combine like terms: $$ x^2+ \color{blue}{8x} + \color{blue}{8x} +64 = x^2+ \color{blue}{16x} +64 $$ |
| ③ | Remove the parentheses by changing the sign of each term within them. $$ - \left( x^2+16x+64 \right) = -x^2-16x-64 $$ |
| ④ | Combine like terms: $$ \color{blue}{9x^2} \color{red}{-3x} \color{green}{-9} \color{blue}{-x^2} \color{red}{-16x} \color{green}{-64} = \color{blue}{8x^2} \color{red}{-19x} \color{green}{-73} $$ |