Tap the blue circles to see an explanation.
| $$ \begin{aligned}(9+v)\cdot(9+v)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}81+9v+9v+v^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}v^2+18v+81\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{9+v}\right) $ by each term in $ \left( 9+v\right) $. $$ \left( \color{blue}{9+v}\right) \cdot \left( 9+v\right) = 81+9v+9v+v^2 $$ |
| ② | Combine like terms: $$ 81+ \color{blue}{9v} + \color{blue}{9v} +v^2 = v^2+ \color{blue}{18v} +81 $$ |