Tap the blue circles to see an explanation.
| $$ \begin{aligned}(8x+y)(-8x+y)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-64x^2+8xy-8xy+y^2 \xlongequal{ } \\[1 em] & \xlongequal{ }-64x^2+ \cancel{8xy} -\cancel{8xy}+y^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-64x^2+y^2\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{8x+y}\right) $ by each term in $ \left( -8x+y\right) $. $$ \left( \color{blue}{8x+y}\right) \cdot \left( -8x+y\right) = -64x^2+ \cancel{8xy} -\cancel{8xy}+y^2 $$ |
| ② | Combine like terms: $$ -64x^2+ \, \color{blue}{ \cancel{8xy}} \, \, \color{blue}{ -\cancel{8xy}} \,+y^2 = -64x^2+y^2 $$ |