Tap the blue circles to see an explanation.
| $$ \begin{aligned}(8x+3)(8x-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}64x^2-24x+24x-9 \xlongequal{ } \\[1 em] & \xlongequal{ }64x^2 -\cancel{24x}+ \cancel{24x}-9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}64x^2-9\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{8x+3}\right) $ by each term in $ \left( 8x-3\right) $. $$ \left( \color{blue}{8x+3}\right) \cdot \left( 8x-3\right) = 64x^2 -\cancel{24x}+ \cancel{24x}-9 $$ |
| ② | Combine like terms: $$ 64x^2 \, \color{blue}{ -\cancel{24x}} \,+ \, \color{blue}{ \cancel{24x}} \,-9 = 64x^2-9 $$ |