Tap the blue circles to see an explanation.
| $$ \begin{aligned}(8x^3-(25x-12)^2)(3x-7)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(8x^3-(625x^2-600x+144))(9x^2-42x+49) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(8x^3-625x^2+600x-144)(9x^2-42x+49) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}72x^5-5961x^4+32042x^3-57121x^2+35448x-7056\end{aligned} $$ | |
| ① | Find $ \left(25x-12\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 25x } $ and $ B = \color{red}{ 12 }$. $$ \begin{aligned}\left(25x-12\right)^2 = \color{blue}{\left( 25x \right)^2} -2 \cdot 25x \cdot 12 + \color{red}{12^2} = 625x^2-600x+144\end{aligned} $$Find $ \left(3x-7\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 3x } $ and $ B = \color{red}{ 7 }$. $$ \begin{aligned}\left(3x-7\right)^2 = \color{blue}{\left( 3x \right)^2} -2 \cdot 3x \cdot 7 + \color{red}{7^2} = 9x^2-42x+49\end{aligned} $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 625x^2-600x+144 \right) = -625x^2+600x-144 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{8x^3-625x^2+600x-144}\right) $ by each term in $ \left( 9x^2-42x+49\right) $. $$ \left( \color{blue}{8x^3-625x^2+600x-144}\right) \cdot \left( 9x^2-42x+49\right) = \\ = 72x^5-336x^4+392x^3-5625x^4+26250x^3-30625x^2+5400x^3-25200x^2+29400x-1296x^2+6048x-7056 $$ |
| ④ | Combine like terms: $$ 72x^5 \color{blue}{-336x^4} + \color{red}{392x^3} \color{blue}{-5625x^4} + \color{green}{26250x^3} \color{orange}{-30625x^2} + \color{green}{5400x^3} \color{blue}{-25200x^2} + \color{red}{29400x} \color{blue}{-1296x^2} + \color{red}{6048x} -7056 = \\ = 72x^5 \color{blue}{-5961x^4} + \color{green}{32042x^3} \color{blue}{-57121x^2} + \color{red}{35448x} -7056 $$ |