Tap the blue circles to see an explanation.
| $$ \begin{aligned}(8k+6)(8k-6)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}64k^2-48k+48k-36 \xlongequal{ } \\[1 em] & \xlongequal{ }64k^2 -\cancel{48k}+ \cancel{48k}-36 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}64k^2-36\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{8k+6}\right) $ by each term in $ \left( 8k-6\right) $. $$ \left( \color{blue}{8k+6}\right) \cdot \left( 8k-6\right) = 64k^2 -\cancel{48k}+ \cancel{48k}-36 $$ |
| ② | Combine like terms: $$ 64k^2 \, \color{blue}{ -\cancel{48k}} \,+ \, \color{blue}{ \cancel{48k}} \,-36 = 64k^2-36 $$ |