Tap the blue circles to see an explanation.
| $$ \begin{aligned}(8kn+4n+3)(2s-n)+2kn+8ks+3k+3n+2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}16kns-8kn^2+8ns-4n^2+6s-3n+2kn+8ks+3k+3n+2 \xlongequal{ } \\[1 em] & \xlongequal{ }16kns-8kn^2+8ns-4n^2+6s -\cancel{3n}+2kn+8ks+3k+ \cancel{3n}+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-8kn^2+16kns+2kn+8ks-4n^2+8ns+3k+6s+2\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{8kn+4n+3}\right) $ by each term in $ \left( 2s-n\right) $. $$ \left( \color{blue}{8kn+4n+3}\right) \cdot \left( 2s-n\right) = 16kns-8kn^2+8ns-4n^2+6s-3n $$ |
| ② | Combine like terms: $$ 16kns-8kn^2+8ns-4n^2+6s \, \color{blue}{ -\cancel{3n}} \,+2kn+8ks+3k+ \, \color{blue}{ \cancel{3n}} \,+2 = -8kn^2+16kns+2kn+8ks-4n^2+8ns+3k+6s+2 $$ |