Tap the blue circles to see an explanation.
| $$ \begin{aligned}(8h+1)(3h^2-4h+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}24h^3-32h^2+8h+3h^2-4h+1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}24h^3-29h^2+4h+1\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{8h+1}\right) $ by each term in $ \left( 3h^2-4h+1\right) $. $$ \left( \color{blue}{8h+1}\right) \cdot \left( 3h^2-4h+1\right) = 24h^3-32h^2+8h+3h^2-4h+1 $$ |
| ② | Combine like terms: $$ 24h^3 \color{blue}{-32h^2} + \color{red}{8h} + \color{blue}{3h^2} \color{red}{-4h} +1 = 24h^3 \color{blue}{-29h^2} + \color{red}{4h} +1 $$ |