Tap the blue circles to see an explanation.
| $$ \begin{aligned}(8b-2)(3b^2+2b-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}24b^3+16b^2-16b-6b^2-4b+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}24b^3+10b^2-20b+4\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{8b-2}\right) $ by each term in $ \left( 3b^2+2b-2\right) $. $$ \left( \color{blue}{8b-2}\right) \cdot \left( 3b^2+2b-2\right) = 24b^3+16b^2-16b-6b^2-4b+4 $$ |
| ② | Combine like terms: $$ 24b^3+ \color{blue}{16b^2} \color{red}{-16b} \color{blue}{-6b^2} \color{red}{-4b} +4 = 24b^3+ \color{blue}{10b^2} \color{red}{-20b} +4 $$ |