Tap the blue circles to see an explanation.
| $$ \begin{aligned}(7x-8)(2x+2)(x-6)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(14x^2+14x-16x-16)(x-6) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(14x^2-2x-16)(x-6) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}14x^3-84x^2-2x^2+12x-16x+96 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}14x^3-86x^2-4x+96\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{7x-8}\right) $ by each term in $ \left( 2x+2\right) $. $$ \left( \color{blue}{7x-8}\right) \cdot \left( 2x+2\right) = 14x^2+14x-16x-16 $$ |
| ② | Combine like terms: $$ 14x^2+ \color{blue}{14x} \color{blue}{-16x} -16 = 14x^2 \color{blue}{-2x} -16 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{14x^2-2x-16}\right) $ by each term in $ \left( x-6\right) $. $$ \left( \color{blue}{14x^2-2x-16}\right) \cdot \left( x-6\right) = 14x^3-84x^2-2x^2+12x-16x+96 $$ |
| ④ | Combine like terms: $$ 14x^3 \color{blue}{-84x^2} \color{blue}{-2x^2} + \color{red}{12x} \color{red}{-16x} +96 = 14x^3 \color{blue}{-86x^2} \color{red}{-4x} +96 $$ |