Tap the blue circles to see an explanation.
| $$ \begin{aligned}(7+x+\frac{5}{x})\cdot(4+2x)(8+2x+\frac{4}{x})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x^2+7x+5}{x}\cdot(4+2x)\frac{2x^2+8x+4}{x} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{2x^3+18x^2+38x+20}{x}\frac{2x^2+8x+4}{x} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{4x^5+52x^4+228x^3+416x^2+312x+80}{x^2}\end{aligned} $$ | |
| ① | Add $7+x$ and $ \dfrac{5}{x} $ to get $ \dfrac{ \color{purple}{ x^2+7x+5 } }{ x }$. Step 1: Write $ 7+x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ② | Add $8+2x$ and $ \dfrac{4}{x} $ to get $ \dfrac{ \color{purple}{ 2x^2+8x+4 } }{ x }$. Step 1: Write $ 8+2x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Multiply $ \dfrac{x^2+7x+5}{x} $ by $ 4+2x $ to get $ \dfrac{2x^3+18x^2+38x+20}{x} $. Step 1: Write $ 4+2x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{x^2+7x+5}{x} \cdot 4+2x & \xlongequal{\text{Step 1}} \frac{x^2+7x+5}{x} \cdot \frac{4+2x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( x^2+7x+5 \right) \cdot \left( 4+2x \right) }{ x \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4x^2+2x^3+28x+14x^2+20+10x }{ x } = \frac{2x^3+18x^2+38x+20}{x} \end{aligned} $$ |
| ④ | Add $8+2x$ and $ \dfrac{4}{x} $ to get $ \dfrac{ \color{purple}{ 2x^2+8x+4 } }{ x }$. Step 1: Write $ 8+2x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Multiply $ \dfrac{2x^3+18x^2+38x+20}{x} $ by $ \dfrac{2x^2+8x+4}{x} $ to get $ \dfrac{4x^5+52x^4+228x^3+416x^2+312x+80}{x^2} $. Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{2x^3+18x^2+38x+20}{x} \cdot \frac{2x^2+8x+4}{x} & \xlongequal{\text{Step 1}} \frac{ \left( 2x^3+18x^2+38x+20 \right) \cdot \left( 2x^2+8x+4 \right) }{ x \cdot x } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 4x^5+16x^4+8x^3+36x^4+144x^3+72x^2+76x^3+304x^2+152x+40x^2+160x+80 }{ x^2 } = \frac{4x^5+52x^4+228x^3+416x^2+312x+80}{x^2} \end{aligned} $$ |