Tap the blue circles to see an explanation.
| $$ \begin{aligned}(7b^5-4b)(7b^5+4b)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}49b^{10}+28b^6-28b^6-16b^2 \xlongequal{ } \\[1 em] & \xlongequal{ }49b^{10}+ \cancel{28b^6} -\cancel{28b^6}-16b^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}49b^{10}-16b^2\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{7b^5-4b}\right) $ by each term in $ \left( 7b^5+4b\right) $. $$ \left( \color{blue}{7b^5-4b}\right) \cdot \left( 7b^5+4b\right) = 49b^{10}+ \cancel{28b^6} -\cancel{28b^6}-16b^2 $$ |
| ② | Combine like terms: $$ 49b^{10}+ \, \color{blue}{ \cancel{28b^6}} \, \, \color{blue}{ -\cancel{28b^6}} \,-16b^2 = 49b^{10}-16b^2 $$ |