Tap the blue circles to see an explanation.
| $$ \begin{aligned}(7-2x)\cdot(5-2x)x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(35-14x-10x+4x^2)x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(4x^2-24x+35)x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4x^3-24x^2+35x\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{7-2x}\right) $ by each term in $ \left( 5-2x\right) $. $$ \left( \color{blue}{7-2x}\right) \cdot \left( 5-2x\right) = 35-14x-10x+4x^2 $$ |
| ② | Combine like terms: $$ 35 \color{blue}{-14x} \color{blue}{-10x} +4x^2 = 4x^2 \color{blue}{-24x} +35 $$ |
| ③ | $$ \left( \color{blue}{4x^2-24x+35}\right) \cdot x = 4x^3-24x^2+35x $$ |