Tap the blue circles to see an explanation.
| $$ \begin{aligned}6y+8-(-5y^2-6y+8)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6y+8+5y^2+6y-8 \xlongequal{ } \\[1 em] & \xlongequal{ }6y+ \cancel{8}+5y^2+6y -\cancel{8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5y^2+12y\end{aligned} $$ | |
| ① | Remove the parentheses by changing the sign of each term within them. $$ - \left( -5y^2-6y+8 \right) = 5y^2+6y-8 $$ |
| ② | Combine like terms: $$ \color{blue}{6y} + \, \color{red}{ \cancel{8}} \,+5y^2+ \color{blue}{6y} \, \color{red}{ -\cancel{8}} \, = 5y^2+ \color{blue}{12y} $$ |