Tap the blue circles to see an explanation.
| $$ \begin{aligned}(6y+2)(6y-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}36y^2-12y+12y-4 \xlongequal{ } \\[1 em] & \xlongequal{ }36y^2 -\cancel{12y}+ \cancel{12y}-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}36y^2-4\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{6y+2}\right) $ by each term in $ \left( 6y-2\right) $. $$ \left( \color{blue}{6y+2}\right) \cdot \left( 6y-2\right) = 36y^2 -\cancel{12y}+ \cancel{12y}-4 $$ |
| ② | Combine like terms: $$ 36y^2 \, \color{blue}{ -\cancel{12y}} \,+ \, \color{blue}{ \cancel{12y}} \,-4 = 36y^2-4 $$ |