Tap the blue circles to see an explanation.
| $$ \begin{aligned}(6y^2+5y^4)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}36y^4+60y^6+25y^8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}25y^8+60y^6+36y^4\end{aligned} $$ | |
| ① | Find $ \left(6y^2+5y^4\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 6y^2 } $ and $ B = \color{red}{ 5y^4 }$. $$ \begin{aligned}\left(6y^2+5y^4\right)^2 = \color{blue}{\left( 6y^2 \right)^2} +2 \cdot 6y^2 \cdot 5y^4 + \color{red}{\left( 5y^4 \right)^2} = 36y^4+60y^6+25y^8\end{aligned} $$ |
| ② | Combine like terms: $$ 25y^8+60y^6+36y^4 = 25y^8+60y^6+36y^4 $$ |